| Q1. | (a)
befo | In an X-ray tube, electrons are accelerated from rest through a pd of 72.4 kV ore they hit the target anode. | | |-----|-------------|--|-----| | | (i) | Calculate the kinetic energy of an electron as it reaches the anode. Give your answer to an appropriate number of significant figures. | answer = J | (2) | | | | | | | | (ii) | Assuming that the electron gives up all this energy to form an X-ray photon, calculate the wavelength of the photon. | answer = m | (2) | | | | | (-) | | (b) | X-ra
ima | ays are used in a CT scanner. Describe briefly how a CT scanner produces an ge. | (Total 7 ma | |-----|---|-----------------| (a) Outline the basic principles of a magnetic resonance (MR) scann scan a patient's brain. | er used to | | | Scarr a patient's brain. | (b) | State and explain two advantages of using an MR scanner to scan a compared with a CT scanner. | patient's brain |